MCD310-14io1

Thyristor \Diode Module

Phase leg

Part number

MCD310-14io1

$\mathrm{V}_{\text {RRM }}=2 \times 1400 \mathrm{~V}$	
$\mathrm{I}_{\mathrm{TAV}}=$	$=320 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{T}}$	$=1.08 \mathrm{~V}$

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying $50 / 60 \mathrm{~Hz}$
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: Y2

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Package	Y2		Ratings			
Symbol	Definition Conditions		min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMs }}$	RMS current per terminal				600	A
T_{vj}	virtual junction temperature		-40		140	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-40		125	${ }^{\circ} \mathrm{C}$
Weight				255		g
$\begin{aligned} & \mathbf{M}_{\mathrm{D}} \\ & \mathbf{M}_{\mathrm{T}} \end{aligned}$	mounting torque terminal torque		$\begin{array}{r} 2.5 \\ 12 \end{array}$		5 15	Nm Nm
$\mathbf{d}_{\text {Spp/App }}$ $\mathbf{d}_{\text {spb/Apb }}$	creepage distance on surface / striking distance through air	terminal to terminal terminal to backside	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$			mm mm
$\mathrm{V}_{\text {ISOL }}$	isolation voltage $\quad$$\mathrm{t}=1$ second $\mathrm{t}=1$ minute	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}$; lisol $\leq 1 \mathrm{~mA}$	$\begin{aligned} & 3600 \\ & 3000 \\ & \hline \end{aligned}$			V V

Date Code (DC)

+ Production Index (PI)
Data Matrix: part no. (1-19), DC + PI (20-25), lot.no.\# (26-31),
blank (32), serial no.\# (33-36)
blank (32), serial no.\# (33-36)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCD310-14io1	MCD310-14io1	Box	2	428809

Equivalent Circuits for Simulation \quad *on die level $\quad T_{v J}=140^{\circ} \mathrm{C}$

$\mathrm{V}_{0 \text { max }}$ threshold voltage 0.8
0.8 V
$\mathbf{R}_{0 \text { max }}$ slope resistance * $0.32 \mathrm{~m} \Omega$
Thyristor

Optional accessories for modules
Keyed gate/cathode twin plugs with wire length $=350 \mathrm{~mm}$, gate $=$ white, cathode $=$ red
Type ZY 180L (L = Left for pin pair 4/5) UL 758, style 3751

Thyristor

Fig. 1 Surge overload current $\mathrm{I}_{\mathrm{T}(\mathrm{Fsm}}$: crest value, t: duration

Fig. $2 I^{2 t}$ versus time ($1-10 \mathrm{~ms}$)

Fig. 4 Power dissipation versus onstate current and• ambient temperature (per thyristor/diode)

Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

Fig. 3 Max. forward current at case temperature

Fig. 5 Gate trigger characteristics

Fig. 7 Gate trigger delay time

Rectifier

Fig. 7 Three phase AC-controller: •
Power dissipation versus RMS output current and ambient temperature

Fig. 8 Transient thermal impedance junction to case (per thyristor)

$\mathrm{R}_{\mathrm{th} J \mathrm{~K}}$ for various conduction angles d :

d	$\mathrm{R}_{\text {thJk }}[\mathrm{K} / \mathrm{W}]$
DC	0.152
$180^{\circ} \mathrm{C}$	0.154
$120^{\circ} \mathrm{C}$	0.154
$60^{\circ} \mathrm{C}$	0.155
$30^{\circ} \mathrm{C}$	0.155

Constants for $\mathrm{Z}_{\mathrm{th} \mathrm{JK}}$ calculation:

i	$\mathrm{R}_{\text {thi }}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.003	0.099
2	0.0143	0.168
3	0.0947	0.456
4	0.04	1.36

Fig. 9 Transient thermal impedance junction to heatsink (per hyristor)

