Three Phase Rectifier Bridge

$\mathrm{V}_{\text {RSM }}$	$\mathrm{V}_{\text {RRM }}$	Type	
$\mathrm{V}_{\text {DSM }}$	$\mathrm{V}_{\text {DRM }}$		
V	V		
900	800	VTO 39-08ho7	VVZ 39-08ho7
$\mathbf{1 3 0 0}$	$\mathbf{1 2 0 0}$	VTO 39-12ho7	VVZ 39-12ho7

$$
\begin{aligned}
\mathrm{I}_{\mathrm{dAV}} & =39 \mathrm{~A} \\
\mathrm{~V}_{\text {RRM }} & =800 / 1200 \mathrm{~V}
\end{aligned}
$$

Preliminary data

VTO 39

Features

- Package with DCB ceramic base plate
- Isolation voltage 3000 V~
- Planar passivated chips
- Low forward voltage drop
- Leads suitable for PC board soldering

Applications

- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Advantages

- Easy to mount with two screw
- Space and weight savings
- Improved temperature \& power cycling capability
- Small and light weight

Data according to IEC 60747 and refer to a single diode unless otherwise stated
(1) for resistive load at bridge output.

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Symbol	Conditions		Characteristic Values		
$\mathrm{I}_{\mathrm{D}} ; \mathrm{I}_{\text {R }}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }} ; \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }}$	$\mathrm{T}_{\mathrm{vJ}}=\mathrm{T}_{\mathrm{VJM}}$	\leq	5	mA
V_{T}	$\mathrm{I}_{\mathrm{T}}=20 \mathrm{~A}$	$\mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$	\leq	1.6	V
$\mathrm{V}_{\text {T0 }}$	For power-loss	$\mathrm{T}_{\mathrm{v},}=125^{\circ} \mathrm{C}$		0.85	V
$\mathrm{r}_{\text {T }}$	calculations only			27	$\mathrm{m} \Omega$
V_{GT}	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$	\leq	1.5	V
		$\mathrm{T}_{\mathrm{v},}=-40^{\circ} \mathrm{C}$	\leq	2.5	V
$\mathrm{I}_{\text {GT }}$	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$	\leq	25	mA
		$\mathrm{T}_{\mathrm{v},}=-40^{\circ} \mathrm{C}$	\leq	50	mA
V_{GD}	$\mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\text {DRM }}$	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {VJM }}$	\leq	0.2	V
I_{GD}			\leq	3	mA
I_{L}	$\begin{aligned} & \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s} \\ & \mathrm{P}_{\mathrm{G}}=0.1 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.1 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$	\leq	75	mA
I_{H}	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{GK}}=\infty$	$\mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$	\leq	50	mA
$\mathrm{tgd}_{\text {d }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=1 / 2 \mathrm{~V}_{\mathrm{DRM}} \\ & \mathrm{I}_{\mathrm{G}}=0.1 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.1 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$	\leq	2	$\mu \mathrm{s}$
$\mathbf{R}_{\text {thJc }}$	per thyristor / diode; DC			1.3	K/W
	per module			0.22	K/W
$\mathbf{R}_{\text {thJH }}$	per thyristor / diode; DC per module			1.8	K/W
				0.3	K/W
$\mathrm{d}_{\text {s }}$	Creeping distance on surface			11.2	mm
d_{A}	Creepage distance in air			5	mm
a	Max. allowable acceleration			50	$\mathrm{m} / \mathrm{s}^{2}$

Dimensions in mm (1 mm = 0.0394")

